Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 21(2)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38518365

RESUMO

Objective. Over the past decade, neural electrodes have played a crucial role in bridging biological tissues with electronic and robotic devices. This study focuses on evaluating the optimal tip profile and insertion speed for effectively implanting Paradromics' high-density fine microwire arrays (FµA) prototypes into the primary visual cortex (V1) of mice and rats, addressing the challenges associated with the 'bed-of-nails' effect and tissue dimpling.Approach. Tissue response was assessed by investigating the impact of electrodes on the blood-brain barrier (BBB) and cellular damage, with a specific emphasis on tailored insertion strategies to minimize tissue disruption during electrode implantation.Main results.Electro-sharpened arrays demonstrated a marked reduction in cellular damage within 50µm of the electrode tip compared to blunt and angled arrays. Histological analysis revealed that slow insertion speeds led to greater BBB compromise than fast and pneumatic methods. Successful single-unit recordings validated the efficacy of the optimized electro-sharpened arrays in capturing neural activity.Significance.These findings underscore the critical role of tailored insertion strategies in minimizing tissue damage during electrode implantation, highlighting the suitability of electro-sharpened arrays for long-term implant applications. This research contributes to a deeper understanding of the complexities associated with high-channel-count microelectrode array implantation, emphasizing the importance of meticulous assessment and optimization of key parameters for effective integration and minimal tissue disruption. By elucidating the interplay between insertion parameters and tissue response, our study lays a strong foundation for the development of advanced implantable devices with a reduction in reactive gliosis and improved performance in neural recording applications.


Assuntos
Barreira Hematoencefálica , Inflamação , Ratos , Animais , Eletrodos Implantados , Microeletrodos
2.
J Neural Eng ; 18(4)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34038875

RESUMO

Objective. The safe insertion of high density intracortical electrode arrays has been a long-standing practical challenge for neural interface engineering and applications such as brain-computer interfaces (BCIs). However, the pia mater can be difficult to penetrate and causes deformation of underlying cortical tissue during insertion of high-density intracortical arrays. This can lead to neuron damage or failed insertions. The development of a method to ease insertion through the pia mater would represent a significant step toward inserting high density intracortical arrays.Approach. Here we describe a surgical procedure, inspired by laser corneal ablation, that can be used in translational models to thin the pia mater.Main results. We demonstrate that controlled pia removal with laser ablation over a small area of cortex allows for microelectrode arrays to be inserted into the cortex with less force, thus reducing deformation of underlying tissue during placement of the microelectrodes. This procedure allows for insertion of high-density electrode arrays and subsequent acute recordings of spiking neuron activity in sheep cortex. We also show histological and electrophysiological evidence that laser removal of the pia does not acutely affect neuronal viability in the region.Significance. Laser ablation of the pia reduces insertion forces of high-density arrays with minimal to no acute damage to cortical neurons. This approach suggests a promising new path for clinical BCI with high-density microelectrode arrays.


Assuntos
Terapia a Laser , Pia-Máter , Animais , Córtex Cerebral , Eletrodos Implantados , Microeletrodos , Ovinos
3.
J Neural Eng ; 18(1): 015002, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33624614

RESUMO

OBJECTIVE: Decoding neural activity has been limited by the lack of tools available to record from large numbers of neurons across multiple cortical regions simultaneously with high temporal fidelity. To this end, we developed the Argo system to record cortical neural activity at high data rates. APPROACH: Here we demonstrate a massively parallel neural recording system based on platinum-iridium microwire electrode arrays bonded to a CMOS voltage amplifier array. The Argo system is the highest channel count in vivo neural recording system, supporting simultaneous recording from 65 536 channels, sampled at 32 kHz and 12-bit resolution. This system was designed for cortical recordings, compatible with both penetrating and surface microelectrodes. MAIN RESULTS: We validated this system through initial bench testing to determine specific gain and noise characteristics of bonded microwires, followed by in-vivo experiments in both rat and sheep cortex. We recorded spiking activity from 791 neurons in rats and surface local field potential activity from over 30 000 channels in sheep. SIGNIFICANCE: These are the largest channel count microwire-based recordings in both rat and sheep. While currently adapted for head-fixed recording, the microwire-CMOS architecture is well suited for clinical translation. Thus, this demonstration helps pave the way for a future high data rate intracortical implant.


Assuntos
Amplificadores Eletrônicos , Neurônios , Animais , Eletrodos Implantados , Microeletrodos , Ratos , Ovinos
4.
Front Neurosci ; 13: 493, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191216

RESUMO

Improving the long-term performance of neural electrode interfaces requires overcoming severe biological reactions such as neuronal cell death, glial cell activation, and vascular damage in the presence of implanted intracortical devices. Past studies traditionally observe neurons, microglia, astrocytes, and blood-brain barrier (BBB) disruption around inserted microelectrode arrays. However, analysis of these factors alone yields poor correlation between tissue inflammation and device performance. Additionally, these studies often overlook significant biological responses that can occur during acute implantation injury. The current study employs additional histological markers that provide novel information about neglected tissue components-oligodendrocytes and their myelin structures, oligodendrocyte precursor cells, and BBB -associated pericytes-during the foreign body response to inserted devices at 1, 3, 7, and 28 days post-insertion. Our results reveal unique temporal and spatial patterns of neuronal and oligodendrocyte cell loss, axonal and myelin reorganization, glial cell reactivity, and pericyte deficiency both acutely and chronically around implanted devices. Furthermore, probing for immunohistochemical markers that highlight mechanisms of cell death or patterns of proliferation and differentiation have provided new insight into inflammatory tissue dynamics around implanted intracortical electrode arrays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...